SOME CHEMICAL PROPERTIES OF 2,3-DIHYDRO-4H-[1,3]THIAZINO[3,2-*a*]BENZ-IMIDAZOL-4-ONE AND 2-ARYL-2,3-DIHYDRO-4H-[1,3]THIAZINO[3,2-*a*]BENZIMIDAZOL-4-ONES

V. N. Britsun, A. N. Esipenko, and M. O. Lozinskii

We have studied the reaction of 2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-one and 2-aryl-2,3dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-ones with amines, alkylating reagents, and hydrogen peroxide. We have shown that the presence of an aryl substituent at the 2 position of [1,3-thiazino[3,2a]benzimidazol-4-ones has a substantial effect on the direction of the reactions.

Keywords: 2-aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-*a*]benzimidazol-4-ones, 2,3-dihydro-4H-[1,3]-thiazino[3,2-*a*]benzimidazol-4-one, alkylation, amination, oxidation.

2,3-Dihydro-4H-[1,3]thiazino[3,2-*a*]benzimidazol-4-one was obtained for the first time 30 years ago [1], but there is no data in the literature about its chemical properties and transformations. We earlier developed a general approach to synthesis of 2-aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-*a*]benzimidazol-4-ones, based on cyclization of benzimidazole-2-thione with 3-arylacryloyl chlorides [2, 3]. We thought it would be interesting to study and compare the chemical properties of 2,3-dihydro-4H-[1,3]thiazino[3,2-*a*]benzimidazol-4-one and 2-aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-*a*]benzimidazol-4-ones. We should note that these compounds are polyfunctional and contain several reaction centers, which is why their reactivity is complex and unpredictable.

We have studied the reaction of 2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-one (1) with alkylating reagents, hydrogen peroxide, and amines.

We have found that alkylation of [1,3]thiazino[3,2-a]benzimidazol-4-one **1** with benzyl bromide and 2-bromoacetophenone at 130°C, followed by treatment of the reaction mass with an aqueous NaHCO₃ solution, lead to formation of 3-(1-alkyl-1H-benz[*d*]imidazol-2-ylsulfanyl)propanoic acids **2a,b**.

Hydrogen peroxide in acetic acid oxidizes compound 1 to form benzimidazol-2-one 3 and 2-carboxyethane-1-sulfonic acid 4. The reaction of ketone 1 with amines (ammonia, hydrazine, and benzylamine) with moderate heating occurs with cleavage of the N–CO bond and formation of the amides 5 (Scheme 1).

However, at higher temperature (boiling thiazinobenzimidazolone 1 (or N-benzylamide 5c) in benzylamine (184°C) and also boiling N-benzylamide 5c in 1,3-dichlorobenzene (172°C)), 1,3-di(2-benzylcarbamoylethyl)-2,3-dihydrobenz[d]imidazole-2-thione (6) and unsubstituted 2,3-dihydrobenzimidazole-2-thione (7) are formed. In the ¹H NMR spectrum of compound 6, there is no signal from an N-imidazole proton, and instead of a triplet of protons from the S<u>CH₂</u>CH₂CO group (at 3.50 ppm in the starting compound

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kiev 02094; e-mail: iochkiev@ukrpack.net. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 445-452, March, 2006. Original article submitted October 31, 2003.

2 a $R^1 = Ph$, **b** $R^1 = PhCO$; **5 a** $R^2 = H$, **b** $R^2 = NH_2$, **c** $R^2 = PhCH_2$

5c), we see a triplet from the N<u>CH₂</u>CH₂CO group at 4.52 ppm. Apparently thermodynamic factors are the driving force for this reaction, since the C–N bond is stronger than the C–S bond (for comparison: the heats of formation for Alk–SH and Ph–SH bonds are 69 and 86 kcal/mol, while for AlkNH₂ and PhNH₂ the heats of formation are respectively 87 and 104 kcal/mol [4]), and the symmetric structure of molecule **6** (with substituents on the two nitrogen atoms) is energetically more favorable than the nonsymmetric structure (with a substituent on one nitrogen atom). This reaction probably occurs through decomposition of **5c** to form benzimidazole-2-thione **7** and N-benzylacrylamide, which then alkylates the nitrogen atoms of thione **7** to form compound **6**.

The direction of the reactions of 2-aryl[1,3]thiazino[3,2-*a*]benzimidazol-4-ones **8a,b** with amines of medium and strong basicity, in contrast to analogous reactions of thiazinobenzimidazolone **1**, depends to a significant extent on the reaction temperature and the basicity of the amine (Scheme 2).

The major product of ammonolysis (at 30°C) of compound **8a** is $3-(1H-\text{benz}[d]\text{imidazol-2-ylsulfanyl)-3-phenylpropanamide (9) (70% yield), and only small amounts of benzimidazole-2-thione (7) (16%) and cinnamoylamide$ **10a**(19%) are isolated. However, the reaction of benzimidazolones**8a,b**with benzylamine in boiling ethanol is accompanied by degradation of the 1,3-thiazine ring to form only benzimidazole-2-thione (7) (70-81%) and cinnamoyl-N-benzylamides**10b,c**(76-83%). Hydrazinolysis of heterocycles**8a,b**, like ammonolysis, leads only to the corresponding hydrazides**11a,b**(81-85% yields), which react smoothly with isothiocyanates, where they are converted to the thiosemicarbazides**12a,b**. The phenylthiosemicarbazide**12a**undergoes cyclization in sulfuric acid to form the corresponding phenylamino-1,3,4-thiadiazole**13**.

In the reaction of [1,3]thiazino[3,2-a]benzimidazol-4-one **8a** with alkylating reagents, the direction of the reaction depends on the chemical nature of the latter (Scheme 3).

Scheme 2

12a,b

N H

8a, 10a, b, 11a Ar = Ph, 8b, 10c, 11b Ar = 4-MeOC₆H₄; 10 a R¹ = H, b, c R¹ = Bn; 12 a R² = Ph, b R² = Me

Com-	Empirical formula	Found, % Calculated, %			mp. °C*	Yield, %
pound		С	Н	N	r, -	
2a	$C_{17}H_{16}N_2O_2S$	<u>65.68</u> 65.36	<u>5.34</u> 5.16	<u>8.70</u> 8.97	130-133	78
2b	$C_{18}H_{16}N_{2}O_{3}S$	$\frac{63.63}{63.51}$	$\frac{4.98}{4.74}$	$\frac{7.85}{8.23}$	235-240	73
3	$C_7H_6N_2O$	$\frac{62.42}{62.68}$	$\frac{4.23}{4.51}$	$\frac{20.22}{20.88}$	293-298 (312[5])	65
4	$C_3H_6O_5S$	$\frac{23.21}{23.38}$	$\frac{3.69}{3.92}$	—	63-65 (69 [6])	69
5a	$C_{10}H_{11}N_3OS$	$\frac{54.40}{54.28}$	<u>5.19</u> 5.01	$\frac{18.80}{18.99}$	126-129	77
5b	$C_{10}H_{12}N_4OS$	$\frac{50.61}{50.83}$	<u>5.23</u> 5.12	$\frac{23.50}{23.71}$	168-170	86
5c	$C_{17}H_{17}N_3OS$	$\frac{65.32}{65.57}$	<u>5.79</u> 5.50	$\frac{13.32}{13.49}$	117-120	81
6	$C_{27}H_{28}N_4O_2S$	$\frac{68.31}{68.62}$	<u>5.69</u> 5.97	$\frac{11.60}{11.85}$	212-215	58
7	$C_7H_6N_2S$	<u>55.69</u> 55.98	$\frac{4.27}{4.03}$	<u>18.36</u> 18.65	290-293 (298 [7])	30
9	$C_{16}H_{15}N_3OS$	$\tfrac{64.74}{64.62}$	$\frac{5.01}{5.08}$	$\frac{13.84}{14.13}$	107-110	70
10a	C ₉ H ₉ NO	$\frac{73.70}{73.45}$	<u>6.09</u> 6.16	<u>9.28</u> 9.52	141-144 (147[8])	19
10b	C ₁₆ H ₁₅ NO	$\frac{80.71}{80.98}$	$\frac{6.23}{6.37}$	$\frac{5.71}{5.90}$	107-110 (104 [9])	83
10c	$C_{17}H_{17}NO_2$	<u>76.71</u> 76.38	<u>6.29</u> 6.41	<u>5.39</u> 5.24	143-145	76
11a	$C_{16}H_{16}N_4OS$	$\frac{61.26}{61.52}$	<u>5.37</u> 5.16	<u>17.69</u> 17.93	139-142	86
11b	$C_{17}H_{18}N_4O_2S$	$\frac{59.46}{59.63}$	$\frac{5.06}{5.30}$	$\frac{16.18}{16.36}$	151-153	81
12a	$C_{23}H_{21}N_5OS_2$	$\frac{61.53}{61.72}$	$\frac{4.89}{4.73}$	<u>15.90</u> 15.65	187-190	78
12b	$C_{18}H_{19}N_5OS_2$	<u>56.14</u> 56.08	$\frac{4.74}{4.97}$	<u>18.45</u> 18.17	208-210	86
13	$C_{23}H_{19}N_5S_2$	<u>64.23</u> 64.31	$\frac{4.66}{4.46}$	<u>16.59</u> 16.30	175-177	56
14	$C_{23}H_{18}N_2OS$	<u>74.72</u> 74.57	$\frac{4.65}{4.90}$	$\frac{7.71}{7.56}$	155-160	69
15	$C_{23}H_{18}N_2O_2S$	<u>71.13</u> 71.48	$\frac{4.35}{4.69}$	<u>7.41</u> 7.25	205-207	67
16	$C_7H_6N_2O_3S$	$\frac{42.63}{42.42}$	$\frac{2.87}{3.05}$	$\frac{13.74}{14.13}$	325-330 (365 [10])	71
17	$C_9H_8O_2$	<u>72.69</u> 72.96	<u>5.21</u> 5.44	—	130-132 (134 [11])	74

TABLE 1. Characteristics of Synthesized Compounds

* Compounds 5a-c, 9, 10a-c, 11a,b, 14, 17 were recrystallized from ethanol, 2a and 13 were recrystallized from nitromethane, 2b and 15 were recrystallized from benzonitrile, 3 and 7 were recrystallized from a 1:1 alcohol-water mixture, and 4 and 16 were recrystallized from water.

Thus when thiazinobenzimidazolone 8a was melted with a slight excess of benzyl bromide at 130°C and then the reaction mass was treated with an aqueous NHCO₃ solution, we isolated the monoalkylation product of 1-benzyl-3-cinnamoylbenzimidazole thione 14. At the same time, when compound 8a was boiled with 2-bromoacetophenone in ethanol and then the reaction product was treated with an aqueous NaHCO₃ solution,

TABLE 2. ¹H NMR Spectra of Synthesized Compounds

Com- pound	Chemical shift, δ , ppm (spin-spin coupling constant <i>J</i> , Hz)
2a	2.80 (2H, t, $J = 6.3$, H-2); 3.52 (2H, t, $J = 6.3$, H-3); 5.37 (2H, s, N <u>CH</u> ₂ C ₆ H ₅); 7.18-7.32 (7H, m, C ₆ H ₅ + H-5,6 benzimidazole); 7.46 (1H, m, H-7 benzimidazole); 7.59 (1H, m, H-4 benzimidazole): 12 47 (1H, br. s, COOH)
2b	2.35 (2H, t, <i>J</i> = 6.1, H-2); 3.50 (2H, t, <i>J</i> = 6.1, H-3); 5.87 (2H, s, NCH ₂ CO); 7.16 (2H, m, H-5,6 benzimidazole); 7.43 (1H, m, H-7 benzimidazole); 7.62-7.75 (4H, m, H arom. + H-4 benzimidazole); 8.15 (2H, d, <i>J</i> = 8.6, H arom.); 12.12 (1H, br. s, COOH)
5a	2.86 (2H, t, <i>J</i> = 6.4, <u>CH</u> ₂ –CO); 3.45 (2H, t, <i>J</i> = 6.4, S– <u>CH</u> ₂); 6.98 (1H, CONH); 7.12 (2H, m, H-5,6 benzimidazole); 7.38 (1H, s, CONH); 7.53 (2H, m, H-4,7 benzimidazole); 12.58 (1H, s, NH benzimidazole)
5b	2.58 (2H, t, <i>J</i> = 6.3, <u>CH</u> ₂ CO); 3.48 (2H, t, <i>J</i> = 6.3, S– <u>CH</u> ₂); 4.25 (2H, br. s, NH ₂); 7.13 (2H, m, H-5,6 benzimidazole); 7.43 (2H, m, H-4,7 benzimidazole); 9.07 (1H, s, CONH); 12.52 (1H, s, NH benzimidazole)
5c	2.70 (2H, t, $J = 6.6$, <u>CH</u> ₂ CO); 3.50 (2H, t, $J = 6.6$, S– <u>CH</u> ₂); 4.29 (2H, d, $J = 6.9$, CONH <u>CH</u> ₂ ,); 7.12-7.45 (9H, m, C ₆ H ₅ + H benzimidazole); 8.48 (1H, t, $J = 6.9$, CONH)
6	2.66 (4H, t, $J = 6.7$, CH ₂ CO); 4.23 (4H, d, $J = 6.8$, 2CONH <u>CH₂</u>); 4.52 (4H, t, $J = 6.7$, CH ₂ –N); 7.12-7.25 (12H, m, 2C ₆ H ₅ + H-5,6 benzimidazole); 7.49 (2H, m, H-4,7 benzimidazole); 8.48 (2H, t, $J = 6.8$, 2CONH)
9	2.95 (1H, m, H-2); 3.23 (1H, m, H-2); 5.35 (1H, m, H-3); 6.85 (1H, s, NH); 7.13-7.53 (10H, m, C ₆ H ₅ +NH + H benzimidazole); 12.57 (1H, s, NH benzimidazole)
10c	3.69 (3H, s CH ₃ O); 4.41 (2H, d, $J = 6.8$, NH <u>CH₂</u>); 6.54 (1H, d, $J = 13.2$, Ar–CH=); 6.99 (2H, d, $J = 8.6$, p -C ₆ H ₄); 7.32 (5H, m, C ₆ H ₅); 7.41 (1H, d, J = 13.2, =CH–CO); 7.54 (2H, d, $J = 8.6$, p -C ₆ H ₄); 8.55 (1H, t, $J = 6.8$, CONH)
11a	2.92 (2H, m, H-2); 4.12 (2H, br. s, NH ₂); 5.40 (1H, m, H-3); 7.14-7.52 (9H, m, C ₆ H ₅ + H benzimidazole); 9.08 (1H, s, CONH); 12.03 (1H, br. s, NH benzimidazole)
11b	2.90 (2H, m, H-2); 3.74 (3H, s CH ₃ O); 4.15 (2H, br. s, NH ₂); 5.35 (1H, m, H-3); 6.87 (2H, d, <i>J</i> = 8.9, <i>p</i> -C ₆ H ₄); 7.14 (2H, m, H-5,6 benzimidazole); 7.36 (2H, d, <i>J</i> = 8.9, <i>p</i> -C ₆ H ₄); 7.46 (2H, m, H-4,7 benzimidazole); 9.06 (1H, s, CONH); 11.72 (1H, br. s, NH benzimidazole)
12a	3.14 (2H, m, H-2); 5.38 (1H, m, H-3); 7.15-7.58 (14H, m, 2C ₆ H ₅ + 4H benzimidazole); 9.38 (1H, br. s, CS– <u>NH</u> –Ar); 9.63 (1H, s CONH– <u>NH</u>); 10.19 (1H, br. s, CONH); 12.64 (1H, s, NH benzimidazole)
12b	2.77 (3H, d, $J = 3.1$, CH ₃); 3.09 (2H, m, CH ₂); 5.37 (1H, m, SC <u>H</u>); 7.15 (2H, m, H-5,6 benzimidazole); 7.22-7.48 (6H, m, C ₆ H ₅ + CS–NH); 7.51 (2H, m, H-4,7 benzimidazole); 9.24 (1H, s, CO–NH– <u>NH</u>); 9.86 (1H, s, CONH); 12.65 (1H, s, NH benzimidazole)
13	$3.87 (2H, m, CH_2)$; 5.51 (1H, m, SC <u>H</u>); 7.14-7.69 (15H, m, 2C ₆ H ₅ + NH + 4H benzimidazole); 12.53 (1H, s, NH benzimidazole)
14	5.66 (2H, s N <u>CH</u> ₂ C ₆ H ₅); 7.35-7.51 (11H, m, H arom + H benzimidazole); 7.80 (2H, m, H arom.); 7.88 (1H, d, <i>J</i> = 13.4, C ₆ H ₃ <u>CH</u> =); 7.96 (1H, m, H-7 benzimidazole); 8.13 (1H, d, <i>J</i> = 13.4, CH=CO)
15	6.03 (4H, s NCH ₂ CO); 7.26 (2H, m, H-5,6 benzimidazole); 7.50 (2H, m, H-4,7 benzimidazole); 7.63-7.79 (6H, m, H arom.); 8.14 (4H, d, <i>J</i> = 7.9, H arom.)

we obtained the product of alkylation at the two nitrogen atoms: 1,3-diphenacyl-2,3-dihydro-1Hbenz[d]imidazole-2-thione (15). Compound 15 is formed as a result of alkylation of 8a by 2-bromoacetophenone even when an equimolar ratio of reagents is used. When thiazinobenzimidazolone 8a is treated with concentrated hydrogen peroxide in acetic acid at 20°C, the products of oxidative decomposition of the 1,3-thiazine ring are formed: benzimidazole-2-sulfonic acid (16) and cinnamic acid 17.

Thus the chemical properties and reactivity of compound 1 and 2-aryl-2,3-dihydro-4H-[1,3]thiazino-[3,2-*a*]benzimidazol-4-ones **8a,b** are significantly different. For compound 1, typical reactions are those occurring primarily by breaking the $C_{(4)}$ -N₍₅₎ bond, while for 2-aryl[1,3]thiazino[3,2-*a*]benzimidazol-4-ones **8a,b**, conversions accompanied by breaking of both the $C_{(4)}$ -N₍₅₎ bond and the $S_{(1)}$ -C₍₂₎ bond are more typical. In the latter case, one of the reaction products is cinnamic acid 17 or its amides **10a-c**, **14**. The ease with which they are formed is probably explained by the fact that these compounds contain a conjugated system, and formation of such a system is an energetically favorable process. Probably conversions of thiazinobenzimidazolones **8a,b**, leading to formation of cinnamic acid **17** or its amides, occurs according to a carbanion mechanism (the negative charge on the carbanions is on $C_{(3)}$). At the same time, the reactions of thiazinobenzimidazolone **1** possibly occurs according to a carbanion mechanism only in conversion of compound **5c** to form 1,3-disubstituted benzimidazole-2-thione **6** and benzimidazole-2-thione **7**. The rest of the reactions of compound **1** apparently occur according to different mechanisms, which also explains formation of other products upon alkylation, aminolysis, and oxidation of this compound.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Varian 300 (300 MHz) in DMSO-d₆, internal standard TMS. The physicochemical and spectral characteristics of the synthesized compounds are given in Tables 1 and 2.

3-(1-R-1H-Benz[*d*]imidazol-2-ylsulfanyl)propanoic Acids 2a,b. A mixture of compound 1 (10 mmol) and benzyl bromide (phenacyl bromide) (10 mmol) was held for 10 min at 130°C, cooled, washed with a solution of NHCO₃ (10 mmol) in water (10 ml), and extracted with CHCl₃ (2 × 10 ml). The chloroform was dried over MgSO₄ and then evaporated off, and the acids 2a,b were filtered out.

3-(1H-Benz[*d*]**imidazol-2-ylsulfanyl)propanoic Acid Amide, Hydrazide, and N-Benzylamide 5a-c.** A solution of compound **1** (10 mmol) and ammonia (hydrazine hydrate, benzylamine) (11 mmol) in ethanol (30 ml) was boiled for 1 h, cooled, held for 24 h, and then the precipitated amides **5a-c** were filtered out.

Oxidation of Compounds 1, 8a. A 35% H₂O₂ solution (4 ml) was added dropwise to a solution of thiazinobenzimidazolones 1 (8a) (10 mmol) in AcOH (10 ml) at 20°C. The mixture was held for 24 h and the precipitate of benzimidazol-2-one 3 (benzimidazole-2-sulfonic acid 16) was filtered out. The filtrate was evaporated down at 20°C and the isolated acid 4 (17) was dried.

1,3-Di(N-benzylcarbamoylethyl)-2,3-dihydro-1H-benz[d]**imidazole-2-thione (6).** A solution of compound **1 (5c)** (5 mmol) in benzylamine (1,3-dichlorobenzene) (5 ml) was boiled under reflux for 1 h and then cooled. The precipitate **6** was filtered out. After evaporation of the benzylamine (1,3-dichlorobenzene), benzimidazole-2-thione **7** (30%) was isolated.

Reaction of Compound 8a with Ammonia. Excess gaseous ammonia was passed through a solution of compound **8a** (10 mmol) in ethanol (30 ml) at 30°C for 30 min. The solution was cooled down, held for 24 h, and then the precipitated amide **9** was filtered out. The ethanol was evaporated off and the residue was dissolved with heating in water (80 ml). Upon cooling of the aqueous solution, compound **7** crystallized out (16% yield), and when the filtrate was subsequently evaporated slowly over a few days, the amide **10a** precipitated from the solution.

Reaction of Thiazinobenzimidazolones 8a,b with Benzylamine. A solution of compounds **8a,b** (10 mmol) and benzylamine (11 mmol) in ethanol (30 ml) was boiled for 1 h, cooled, and held for 24 h; the precipitated benzimidazole-2-thione was filtered out (70-81% yield). The amides **10b,c** were isolated from the residue upon evaporation.

3-Aryl-3-(1H-benz[*d*]**imidazol-2-ylsulfanyl)propanoic** Acid Hydrazides 11a,b. A solution of compound 8a,b (10 mmol) and hydrazine hydrate (12 mmol) in ethanol (20 ml) was boiled for 1 h and then cooled, and the precipitated hydrazide 11a,b was filtered out.

4-R-1-[3-Aryl-3-(1H-benz[*d*]**imidazol-2-ylsulfanyl)propanoyl]thiosemicarbazides 12a,b.** A solution of hydrazide **11a** (5 mmol) and phenyl (or methyl) isothiocyanate (6 mmol) in ethanol (20 ml) was boiled for 1 h and then cooled, and the precipitated product **12a** (or respectively **12b**) was filtered out.

 N^2 -Phenyl-5-[2-(1H-benz[d]imidazol-2-ylsulfanyl)-2-phenylethyl]-1,3,4-thiadiazol-2-amine (13). A solution of thiosemicarbazide 12a (5 mmol) was dissolved in H₂SO₄ (5 ml) at 20°C, held for 24 h, and poured into ice water. The precipitating product 13 was filtered out, washed with water, and dried.

3-Phenylpropenamide of 1-Benzyl-2,3-dihydro-1H-benz[*d*]**imidazole-2-thione (14).** A mixture of compound **8a** (10 mmol) and benzyl bromide (11 mmol) was held for 10 min at 130°C, cooled, washed with a 10% NaHCO₃ solution (15 ml), and extracted with CHCl₃ (2×10 ml). The chloroform was dried over MgSO₄ and evaporated down, and the isolated substituted benzylimidazole thione 14 was dried.

1,3-Diphenacyl-2,3-dihydro-1H-benz[*d*]**imidazole-2-thione (15).** A solution of compound **8a** (10 mmol) and phenacyl bromide (20 mmol) in ethanol (30 ml) was boiled for 30 min, cooled, washed with a 10% NaHCO₃ solution (30 ml), and extracted with CHCl₃ (2×10 ml). The chloroform was dried over MgSO₄ and evaporated down, and the isolated product **15** was dried. The aqueous layer was acidified with 10% HCl (10 ml) and the precipitate of the cinnamic acid **17** (67% yield) was filtered out.

REFERENCES

- 1. K. V. Anan'eva and N. K. Rozhkova, Uzb. Khim. Zh., 5, 56 (1973); Chem. Abstr. 80:47905 (1974).
- 2. V. N. Britsun and M. O. Lozinskii, Khim. Geterotsikl. Soedin., 1103 (2003).
- 3. V. N. Britsun and M. O. Lozinskii, Ukr. Khim. Zh., 68, 52 (2002).
- 4. S. Patai, *The Chemistry of the Thiol Group, Part 1*, Wiley, London/New York (1974), p. 160.
- 5. Beilstein, 24, 116 (1936).
- 6. *Beilstein*, **4**, 22 (1922).
- 7. Beilstein, 24, 119 (1936).
- 8. Beilstein, 9, 587 (1926).
- 9. I. L. Knunyants and N. P. Gambaryan, Izv. Akad. Nauk SSSR, OKhN, 834 (1957).
- 10. J. G. Everett, J. Chem. Soc., 2402 (1930).
- 11. Beilstein, 9, 573 (1926).